Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative.
نویسندگان
چکیده
We revisit statistical tests for branches of evolutionary trees reconstructed upon molecular data. A new, fast, approximate likelihood-ratio test (aLRT) for branches is presented here as a competitive alternative to nonparametric bootstrap and Bayesian estimation of branch support. The aLRT is based on the idea of the conventional LRT, with the null hypothesis corresponding to the assumption that the inferred branch has length 0. We show that the LRT statistic is asymptotically distributed as a maximum of three random variables drawn from the chi(0)2 + chi(1)2 distribution. The new aLRT of interior branch uses this distribution for significance testing, but the test statistic is approximated in a slightly conservative but practical way as 2(l1- l2), i.e., double the difference between the maximum log-likelihood values corresponding to the best tree and the second best topological arrangement around the branch of interest. Such a test is fast because the log-likelihood value l2 is computed by optimizing only over the branch of interest and the four adjacent branches, whereas other parameters are fixed at their optimal values corresponding to the best ML tree. The performance of the new test was studied on simulated 4-, 12-, and 100-taxon data sets with sequences of different lengths. The aLRT is shown to be accurate, powerful, and robust to certain violations of model assumptions. The aLRT is implemented within the algorithm used by the recent fast maximum likelihood tree estimation program PHYML (Guindon and Gascuel, 2003).
منابع مشابه
Accurate Inference for the Mean of the Poisson-Exponential Distribution
Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...
متن کاملNew algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.
PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been ...
متن کاملSurvey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes
Phylogenetic inference and evaluating support for inferred relationships is at the core of many studies testing evolutionary hypotheses. Despite the popularity of nonparametric bootstrap frequencies and Bayesian posterior probabilities, the interpretation of these measures of tree branch support remains a source of discussion. Furthermore, both methods are computationally expensive and become p...
متن کاملAccurate critical constants for the one-sided approximate likelihood ratio test of a normal mean vector when the covariance matrix is estimated.
Tang, Gnecco, and Geller (1989, Biometrika 76, 577-583) proposed an approximate likelihood ratio (ALR) test of the null hypothesis that a normal mean vector equals a null vector against the alternative that all of its components are nonnegative with at least one strictly positive. This test is useful for comparing a treatment group with a control group on multiple endpoints, and the data from t...
متن کاملStandardized likelihood ratio test for comparing several log-normal means and confidence interval for the common mean.
Standardized likelihood ratio test (SLRT) for testing the equality of means of several log-normal distributions is proposed. The properties of the SLRT and an available modified likelihood ratio test (MLRT) and a generalized variable (GV) test are evaluated by Monte Carlo simulation and compared. Evaluation studies indicate that the SLRT is accurate even for small samples, whereas the MLRT coul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2006